Flavor-changing hyperon decays with invisible scalars

Jhih-Ying Su

NTU

Based on G Li, JY S, J Tandean, Phys. Rev. D 100,no.7, 075003 (arXiv:1905.08759)

Outline

- Introduction
 - Strangeness Hadron decays with missing energy
- \bullet New ds quark interactions with invisible scalar bosons in kaon & hyperon decays
- Comparison with invisible fermions
- Conclusion

• In the standard model (SM) the strangeness-changing neutral current decays of hadrons with missing energy ($\not E$) arise mainly from the loop-induced quark transition $s \rightarrow dv \overline{v}$

• Such decays are highly suppressed in the SM, with branching fractions of order 10^{-10} or less

• E.g. SM perdictions
$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.5^{+1.0}_{-1.2}) \times 10^{-11}$$

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.2^{+1.1}_{-0.7}) \times 10^{-11}$

Bobeth & Buras, 2018

• The modifications due to new physics (NP) may translate into effects big enough to be discoverable.

• Measurements:

 $\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}) = 1.7(1.1) \times 10^{-10} \quad \text{pdg, 2019} \quad \mathcal{B}(K^{-} \to \pi^{0} \pi^{-} \nu \bar{\nu}) \\ \mathcal{B}(K_{L} \to \pi^{0} \nu \bar{\nu}) < 3.0 \times 10^{-9} \quad \text{koto, 2019} \quad \mathcal{B}(K_{L} \to \pi^{0} \pi^{0} \nu \bar{\nu})$

 $\mathcal{B}(K^- \to \pi^0 \pi^- \nu \bar{\nu}) < 4.3 \times 10^{-5} \quad \text{E787, 2001}$ $\mathcal{B}(K_I \to \pi^0 \pi^0 \nu \bar{\nu}) < 8.1 \times 10^{-7} \quad \text{E391a, 2011}$

• Extracting from existing data:

 $\mathcal{B}(K_L o E) < 6.3 imes 10^{-4}, \quad \mathcal{B}(K_S o E) < 1.1 imes 10^{-4}$ Gninenko, 2015

• SM predictions:

 $\mathcal{B}(K^+ \to \pi^+ \nu \nu) = (8.5^{+1.0}_{-1.2}) \times 10^{-11}$ $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.2^{+1.1}_{-0.7}) \times 10^{-11}$ Bobeth & Buras, 2018 $\mathcal{B}(K_L \to \pi^0 \pi^0 \nu \bar{\nu}) \sim 10^{-13}$ $\mathcal{B}(K_L \to \pi^0 \pi^0 \nu \bar{\nu}) \sim 10^{-13}$

Littenberg & Valencia, 1996 Chiang & Gilman, 2000 Kamenik & Smith, 2012

Gninenko, 2015 JT, 1901.10447

Flavor SU(3) octet of spin-1/2 baryons & decuplet of spin-3/2 baryons

• Effective Lagrangian for $sd\phi\overline{\phi}$ interactions at low energies

 $-\mathcal{L}_{\rm NP} \supset \left(\mathsf{c}_{\phi}^{\mathsf{V}} \,\overline{d} \gamma^{\eta} s + \mathsf{c}_{\phi}^{\mathsf{A}} \overline{d} \gamma^{\eta} \gamma_{5} s \right) i \left(\phi^{\dagger} \partial_{\eta} \phi - \partial_{\eta} \phi^{\dagger} \phi \right) \\ + \left(\mathsf{c}_{\phi}^{\mathsf{S}} \,\overline{d} s + \mathsf{c}_{\phi}^{\mathsf{P}} \overline{d} \gamma_{5} s \right) \phi^{\dagger} \phi + H.c.$

 ϕ represents an electrically neutral, colorless, invisible, spin-0 particle. Model-independently $c_{\phi}^{V,A,S,P}$ are generally complex free parameters.

- It contributes to $|\Delta S| = 1$ kaon and hyperon decays with missing energy
 - $K \to \phi \phi$ • $K \to \pi \phi \overline{\phi}$
 - $K \to \pi \pi \phi \bar{\phi}$
 - • $\mathfrak{B} \to \mathfrak{B}' \phi \bar{\phi}, \mathfrak{B} \mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0$
 - $\Omega^- \to \Xi^- \phi \bar{\phi}$

Mesonic matrix elements

 $\langle 0|\overline{d}\gamma^\eta\gamma_{\scriptscriptstyle \rm F}s|\overline{K}^0
angle=\langle 0|\overline{s}\gamma^\eta\gamma_{\scriptscriptstyle \rm F}d|K^0
angle=-if_{\scriptscriptstyle K}p^\eta_{\scriptscriptstyle K},~~\langle 0|\overline{d}\gamma_{\scriptscriptstyle \rm F}s|\overline{K}^0
angle=\langle 0|\overline{s}\gamma_{\scriptscriptstyle \rm F}d|K^0
angle=iB_0f_{\scriptscriptstyle K}$ $\langle 0|\overline{d}(\gamma^{\eta},1)s|\overline{K}^{0}
angle = \langle 0|\overline{s}(\gamma^{\eta},1)d|K^{0}
angle = (0,0)$ $\langle \pi^{-} | ar{d} \gamma^{\eta} s | K^{-}
angle = - \langle \pi^{+} | ar{s} \gamma^{\eta} d | K^{+}
angle = ig(p_{K}^{\eta} + p_{\pi}^{\eta} ig) f_{+} + ig(f_{0} - f_{+} ig) q_{K\pi}^{\eta} \, rac{m_{K}^{2} - m_{\pi}^{2}}{q_{K\pi}^{2}}$ $\langle \pi^- | ar{ds} | K^-
angle = \langle \pi^+ | ar{sd} | K^+
angle = B_0 f_0 \,, \qquad B_0 = rac{m_K^2}{\hat{m} \perp m} \,, \qquad q_{K\pi} = p_K - p_\pi$ $\langle \pi^- | d(\gamma^\eta,1) \gamma_{\scriptscriptstyle \mathsf{F}} s | K^-
angle = \langle \pi^+ | ar{s}(\gamma^\eta,1) \gamma_{\scriptscriptstyle \mathsf{F}} d | K^+
angle = (0,0)$ $\left\langle \pi^{0}(p_{0}) \, \pi^{-}(p_{-}) \Big| ar{d}ig(\gamma^{\eta},1ig) \gamma_{5}s \Big| K^{-}
ight
angle = rac{i\sqrt{2}}{f_{\mathrm{ev}}} igg[ig(p_{0}^{\eta}-p_{-}^{\eta},0ig) + rac{(p_{0}-p_{-})\cdot ilde{q}}{m_{\mathrm{ev}}^{2}- ilde{q}^{2}}ig(ilde{q}^{\eta},-B_{0}ig) igg]$ $\left\langle \pi^0(p_1) \, \pi^0(p_2) \Big| ar{d}ig(\gamma^\eta, 1ig) \gamma_5 s \Big| \overline{K}^0
ight
angle = rac{i}{f_{ ext{cr}}} \left[ig(p_1^\eta + p_2^\eta, 0ig) + rac{(p_1 + p_2) \cdot ilde{q}}{m_{ ext{cr}}^2 - ilde{q}^2} ig(ilde{q}^\eta, -B_0ig)
ight]$ f_K is the kaon decay constant, $f_{\pm,0}$ represent form factors depending on $q_{K\pi}^2$

 $\tilde{q}=p_{K^-}-p_0-p_-=p_{\bar{K}^0}-p_1-p_2$

• Baryonic matrix elements are estimated with aid of chiral perturbation theory at leading order:

B'B	$n\Lambda$	$p\Sigma^+$	$\Lambda \Xi^0$	$\Sigma^0 \Xi^0$	$\Sigma^- \Xi^-$
$\mathcal{V}_{\mathfrak{B}'\mathfrak{B}}$	$-\sqrt{\frac{3}{2}}$	-1	$\sqrt{\frac{3}{2}}$	$\frac{-1}{\sqrt{2}}$	1
$\mathcal{A}_{\mathfrak{B}'\mathfrak{B}}$	$\frac{-1}{\sqrt{6}}(D+3F)$	D-F	$rac{-1}{\sqrt{6}}(D-3F)$	$rac{-1}{\sqrt{2}}(D+F)$	D+F

$$\mathcal{S}_{\mathfrak{B}'\mathfrak{B}} = \frac{m_{\mathfrak{B}} - m_{\mathfrak{B}'}}{m_s - \hat{m}} \mathcal{V}_{\mathfrak{B}'\mathfrak{B}}, \qquad \qquad \mathcal{P}_{\mathfrak{B}'\mathfrak{B}} = \mathcal{A}_{\mathfrak{B}'\mathfrak{B}} B_0 \frac{m_{\mathfrak{B}'} + m_{\mathfrak{B}}}{m_K^2 - \mathbb{Q}^2}$$

$$egin{aligned} &\langle \Xi^{-} ig| \overline{d} \gamma^{\eta} \gamma_{5} s ert \Omega^{-}
angle = \mathcal{C} \, ar{u}_{\Xi} igg(u_{\Omega}^{\eta} + rac{ ilde{Q}^{\eta} \, ilde{Q}_{\kappa}}{m_{K}^{2} - ilde{Q}^{2}} \, u_{\Omega}^{\kappa} igg), \hspace{0.5cm} \langle \Xi^{-} ert \overline{d} \gamma_{5} s ert \Omega^{-}
angle = rac{B_{0} \, \mathcal{C} \, ilde{Q}_{\kappa}}{ ilde{Q}^{2} - m_{K}^{2}} \, ar{u}_{\Xi} u_{\Omega}^{\kappa} \ &\langle \Xi^{-} ert \overline{d} \gamma^{\eta} s ert \Omega^{-}
angle = \langle \Xi^{-} ert \overline{d} s ert \Omega^{-}
angle = 0 \,, \hspace{0.5cm} ilde{Q} = p_{\Omega^{-}} - p_{\Xi^{-}} \end{aligned}$$

Contributions of couplings to kaon and hyperon modes

$$-\mathcal{L}_{\rm NP} \supset \left(\mathsf{c}_{\phi}^{\mathsf{V}} \,\overline{d} \gamma^{\eta} s + \mathsf{c}_{\phi}^{\mathsf{A}} \overline{d} \gamma^{\eta} \gamma_{5} s \right) i \left(\phi^{\dagger} \partial_{\eta} \phi - \partial_{\eta} \phi^{\dagger} \phi \right) \\ + \left(\mathsf{c}_{\phi}^{\mathsf{s}} \,\overline{d} s + \mathsf{c}_{\phi}^{\mathsf{P}} \overline{d} \gamma_{5} s \right) \phi^{\dagger} \phi + H.c.$$

Decay mode	$K \to \phi \bar{\phi}$	$K \to \pi \phi \bar{\phi}$	$K \to \pi \pi' \phi \bar{\phi}$	$\mathfrak{B} ightarrow \mathfrak{B}' \phi \bar{\phi}$	$\Omega^-\to \Xi^-\phi\bar\phi$
Couplings	c^{P}_{ϕ}	$c_\phi^{\tt V},\ c_\phi^{\tt S}$	$c^{\mathtt{A}}_{\phi},\ c^{\mathtt{P}}_{\phi}$	$c^{\mathtt{V}}_{\phi},c^{\mathtt{A}}_{\phi},c^{\mathtt{S}}_{\phi},c^{\mathtt{P}}_{\phi}$	$c^{\mathtt{A}}_{\phi},c^{\mathtt{P}}_{\phi}$

NP couplings affecting FCNC kaon & hyperon decays with missing energy carried by spin-0 bosons $\phi \overline{\phi}$

• $\mathcal{K} \to \not{\!\!E} \quad \mathcal{B}(\mathcal{K}_L \to \not{\!\!E}) < 6.3 \times 10^{-4}, \quad \mathcal{B}(\mathcal{K}_S \to \not{\!\!E}) < 1.1 \times 10^{-4} \quad \text{Gninenko, 2015}$ $\mathcal{B}(\mathcal{K}_L \to \nu \bar{\nu}) \lesssim 1 \times 10^{-10}, \quad \mathcal{B}(\mathcal{K}_S \to \nu \bar{\nu}) \lesssim 2 \times 10^{-14} \quad \frac{\text{Gninenko, 2015}}{\text{JT, 1901.10447}}$ • $\mathcal{K} \to \pi \not{\!\!E}$

$$\begin{split} \mathcal{B}(K^{+} \to \pi^{+} \nu \nu) &= 1.7(1.1) \times 10^{-10} \quad \text{PDG, 2019} \qquad \mathcal{B}(K^{+} \to \pi^{+} \nu \nu) = (8.5^{+1.0}_{-1.2}) \times 10^{-11} \\ \mathcal{B}(K_{L} \to \pi^{0} \nu \bar{\nu}) &< 3.0 \times 10^{-9} \qquad \text{KOTO, 2019} \qquad \mathcal{B}(K_{L} \to \pi^{0} \nu \bar{\nu}) = (3.2^{+1.1}_{-0.7}) \times 10^{-11} \\ \bullet K \to \pi \pi \not E \end{split}$$

 $\mathcal{B}(K^{-} \to \pi^{0} \pi^{-} \nu \bar{\nu}) < 4.3 \times 10^{-5} \quad {}_{\text{E787, 2001}} \quad \mathcal{B}(K^{-} \to \pi^{0} \pi^{-} \nu \bar{\nu}) \sim 10^{-14} \quad {}_{\text{Chiang & Gilman, 2000}} \\ \mathcal{B}(K_{L} \to \pi^{0} \pi^{0} \nu \bar{\nu}) < 8.1 \times 10^{-7} \quad {}_{\text{E391a, 2011}} \quad \mathcal{B}(K_{L} \to \pi^{0} \pi^{0} \nu \bar{\nu}) \sim 10^{-13} \quad {}_{\text{Kamenik & Smith, 2012}}$

Decay mode	$K \to \phi \bar{\phi}$	$K \to \pi \phi \bar{\phi}$	$K \to \pi \pi' \phi \bar{\phi}$	$\mathfrak{B} ightarrow \mathfrak{B}' \phi \bar{\phi}$	$\Omega^-\to \Xi^-\phi\bar\phi$
Couplings	c^P_ϕ	$c_\phi^{\mathtt{V}},\ c_\phi^{\mathtt{S}}$	$c^{\mathtt{A}}_{\phi},\ c^{\mathtt{P}}_{\phi}$	$c_{\phi}^{\mathtt{V}},c_{\phi}^{\mathtt{A}},c_{\phi}^{\mathtt{S}},c_{\phi}^{\mathtt{P}}$	$c^{\mathtt{A}}_{\phi},c^{\mathtt{P}}_{\phi}$

 $K \to \not\!\!\! E \& K \to \pi \pi \not\!\!\! E$ has weaker constraint from experiment

• NP contributing only through operators with pseudoscalar ds part

$$-\mathcal{L}_{_{\mathrm{NP}}} \supset \mathsf{c}_{\phi}^{\mathtt{P}} \overline{d} \gamma_{5} s \, \phi^{\dagger} \phi + H.c.$$

• The constraints come mainly from $K \rightarrow \not\!\!\!\! E$ and lead to

$$|c_{\phi}^{P}|^{2} < 1.1 \times 10^{-16} \text{ GeV}^{-2}$$

• Obtaining

$$\begin{split} & \mathcal{B}\big(\Lambda \to n\phi\bar{\phi}\big) < 1.3 \times 10^{-7} , \quad \mathcal{B}\big(\Sigma^+ \to p\phi\bar{\phi}\big) < 3.7 \times 10^{-8} , \\ & \mathcal{B}\big(\Xi^0 \to \Lambda\phi\bar{\phi}\big) < 1.9 \times 10^{-8} , \quad \mathcal{B}\big(\Xi^0 \to \Sigma^0\phi\bar{\phi}\big) < 2.5 \times 10^{-8} , \\ & \mathcal{B}\big(\Omega^- \to \Xi^-\phi\bar{\phi}\big) < 1.6 \times 10^{-6} . \end{split}$$

• The upper values of these limits is close to the BESIII sensitivity levels. Estimated BESIII sensitivity for branching fractions

$\Lambda o n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar u$	$\Omega^- o \Xi^- u ar{ u}$
$3 imes 10^{-7}$	$4 imes 10^{-7}$	$8 imes 10^{-7}$	$9 imes 10^{-7}$	$2.6 imes10^{-5}$

• NP contributing only through operators with axial-vector ds part

 $-\mathcal{L}_{\rm NP} \supset \mathsf{c}_{\phi}^{\mathsf{A}} \overline{d} \gamma^{\eta} \gamma_{\mathsf{5}} \mathsf{s} \, i \big(\phi^{\dagger} \partial_{\eta} \phi - \partial_{\eta} \phi^{\dagger} \phi \big) + H.c.$

• The constraints come mainly from $K_L^{}
ightarrow \pi^0 E$ and lead to

$$\left(\operatorname{Re} c_{\phi}^{\mathtt{A}}\right)^2 < 3.8 imes 10^{-13} \ \mathrm{GeV}^{-4}$$

• This translate into

$$\begin{split} & \mathcal{B}\big(\Lambda \to n\phi\bar{\phi}\big) < 6.6 \times 10^{-6} , \quad \mathcal{B}\big(\Sigma^+ \to p\phi\bar{\phi}\big) < 1.7 \times 10^{-6} , \\ & \mathcal{B}\big(\Xi^0 \to \Lambda\phi\bar{\phi}\big) < 9.4 \times 10^{-7} , \quad \mathcal{B}\big(\Xi^0 \to \Sigma^0\phi\bar{\phi}\big) < 1.3 \times 10^{-6} , \\ & \mathcal{B}\big(\Omega^- \to \Xi^-\phi\bar{\phi}\big) < 7.5 \times 10^{-5} . \end{split}$$

• The upper values of these limits exceed the BESIII sensitivity levels. Estimated BESIII sensitivity for branching fractions

$\Lambda o n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar u$	$\Omega^- ightarrow \Xi^- u ar{ u}$
$3 imes 10^{-7}$	4×10^{-7}	$8 imes 10^{-7}$	$9 imes 10^{-7}$	$2.6 imes10^{-5}$

NP-enhanced hyperon rates ($m_{\phi} > 0$)

• With $m_{\Phi} > 0$, maximal branching fractions of hyperon modes can be higher

FIG. 1: The maximal branching fractions of $\mathfrak{B} \to \mathfrak{B}' \phi \bar{\phi}$ with $\mathfrak{B}\mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-$ and of $\Omega^- \to \Xi^- \phi \bar{\phi}$, indicated on the plot by the $\mathfrak{B}\mathfrak{B}'$ and Ω^- labels, respectively, versus m_{ϕ} , induced by the contribution of $\operatorname{Re} \mathbf{c}_{\phi}^{\mathbf{A}}$ alone, subject to the $K_L \to \pi^0 \pi^0 \not{\!\!\!\!E}$ constraint and the perturbativity requirement for $m_{\phi} > 76$ MeV as explained in the text.

Invisible fermions as contribution to FCNC

• Effective Lagrangian for sdff interactions at low energies

$$\begin{split} \mathcal{L}_{f} &= - \Big[\overline{d} \gamma^{\eta} s \ \overline{f} \gamma_{\eta} \big(\mathsf{C}_{f}^{\mathtt{V}} + \gamma_{5} \mathsf{C}_{f}^{\mathtt{A}} \big) \mathbf{f} + \overline{d} \gamma^{\eta} \gamma_{5} s \ \overline{f} \gamma_{\eta} \big(\tilde{\mathsf{c}}_{f}^{\mathtt{V}} + \gamma_{5} \tilde{\mathsf{c}}_{f}^{\mathtt{A}} \big) \mathbf{f} \\ &+ \overline{d} s \ \overline{f} \big(\mathsf{C}_{f}^{\mathtt{S}} + \gamma_{5} \mathsf{C}_{f}^{\mathtt{P}} \big) \mathbf{f} + \overline{d} \gamma_{5} s \ \overline{f} \big(\tilde{\mathsf{c}}_{f}^{\mathtt{S}} + \gamma_{5} \tilde{\mathsf{c}}_{f}^{\mathtt{P}} \big) \mathbf{f} \Big] + \text{H.c.} \\ \\ &\text{JT, 1901.10447} \end{split}$$

- It contributes to $|\Delta S| = 1$ kaon and hyperon decays with missing energy.
 - $K o \pi f ar f$
 - $K
 ightarrow \pi \pi' f ar f$
 - $K o f ar{f}$
 - $\mathfrak{B} \to \mathfrak{B}' f \bar{f}$, $\mathfrak{B} \mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0$
 - $\Omega^-
 ightarrow \Xi^- f ar f$

- NP contributing only through operators with pseudoscalar ds part $\mathcal{L}_f \supset -\overline{d}\gamma_5 s \ \overline{f}(\tilde{c}_f^s + \gamma_5 \tilde{c}_f^P) \mathbf{f} + H.c.$
- The constraints come mainly from $K \rightarrow \not\in$ and lead to

$$\left| \tilde{c}_{\texttt{f}}^{\scriptscriptstyle{\mathrm{S}}} \right|^2 + \left| \tilde{c}_{\texttt{f}}^{\scriptscriptstyle{\mathrm{P}}} \right|^2 < 2.2 \times 10^{-16} \; \mathrm{GeV}^{-4}$$

• Obtaining

Li. 2017

Estimated BESIII sensitivity for branching fractions

$\Lambda o n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar u$	$\Omega^- ightarrow \Xi^- u ar{ u}$
$3 imes 10^{-7}$	4×10^{-7}	$8 imes 10^{-7}$	$9 imes 10^{-7}$	$2.6 imes10^{-5}$

• NP contributing only through operators with axial-vector ds part

$$\mathcal{L}_{f} \supset -\overline{d}\gamma^{\eta}\gamma_{5}s \ \overline{f}\gamma_{\eta} (\tilde{c}_{f}^{v} + \gamma_{5}\tilde{c}_{f}^{A})f + H.c.$$

$$\left(\operatorname{Re} \tilde{\mathbf{c}}_{\scriptscriptstyle f}^{\scriptscriptstyle \mathrm{V}}\right)^2 + \left(\operatorname{Re} \tilde{\mathbf{c}}_{\scriptscriptstyle f}^{\scriptscriptstyle \mathrm{A}}\right)^2 < 9.4 \times 10^{-14} \, \mathrm{GeV^{-4}}$$

• This translate into

B

$$egin{aligned} \mathcal{B}ig(\Lambda o nfar{f}ig) &< 6.6 imes 10^{-6} \ , & \mathcal{B}ig(\Sigma^+ o pfar{f}ig) &< 1.7 imes 10^{-6} \ & \mathcal{B}ig(\Xi^0 o \Lambda far{f}ig) &< 9.4 imes 10^{-7} \ , & \mathcal{B}ig(\Xi^0 o \Sigma^0 far{f}ig) &< 1.3 imes 10^{-6} \ & (\Omega^- o \Xi^- far{f}ig) &< 7.5 imes 10^{-5} \ & ext{JT, 1901.10447} \end{aligned}$$

• The upper values of these limits exceed the BESIII sensitivity levels. Estimated BESIII sensitivity for branching fractions

$\Lambda o n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar u$	$\Omega^- ightarrow \Xi^- u ar{ u}$
$3 imes 10^{-7}$	4×10^{-7}	$8 imes 10^{-7}$	$9 imes 10^{-7}$	$2.6 imes10^{-5}$

Decay mode	$\Lambda \to n \not\!$	$\Sigma^+ \to p \not\!\!\! E$	$\Xi^0\to\Lambda \not\!\!\! E$	$\Xi^0 \to \Sigma^0 \not\!\!\! E$	$\Omega^-\to \Xi^- \not\!\!\! E$
Expected BESIII sensitivity	3×10^{-7}	4×10^{-7}	8×10^{-7}	9×10^{-7}	2.6×10^{-5}
$\mathrm{ds}\phi\bar{\phi}$ pseudoscalar	1.3×10^{-7}	3.7×10^{-8}	1.9×10^{-8}	2.5×10^{-8}	1.6×10^{-6}
$\mathrm{ds}\phi\bar{\phi}$ axial vector	6.6×10^{-6}	1.7×10^{-6}	9.4×10^{-7}	1.3×10^{-6}	7.5×10^{-5}
$\mathrm{ds} \boldsymbol{f} \boldsymbol{\bar{f}}$ pseudoscalar	5.0×10^{-9}	3.0×10^{-9}	9.4×10^{-10}	4.4×10^{-10}	3.0×10^{-7}
$\mathrm{ds} \boldsymbol{f} \boldsymbol{\bar{f}}$ axial vector	6.6×10^{-6}	1.7×10^{-6}	9.4×10^{-7}	1.3×10^{-6}	7.5×10^{-5}

Conclusions

- FCNC hyperon & kaon decays with missing energy are potentially sensitive to physics beyond the SM, while they have different set of underlying NP operators.
- Ongoing & future experiments on the hyperon ones can provide access to possible NP effects which is complementary to that from the kaon sectors.
- NP with invisible scalars is more detectable for future experiments.

Thank You!